科学网JXB︱在干热环境下显著提高大豆产量

大豆是世界上最重要的作物之一,用途广泛。然而,生物和非生物胁迫的限制仍然限制了大豆的产量及其质量。近日
产品咨询热线:400-123-4567

大豆是世界上最重要的作物之一,用途广泛。然而,生物和非生物胁迫的限制仍然限制了大豆的产量及其质量。

近日,阿根廷圣达菲国立大学利托罗国家农业生物技术研究所的研究组在Journal of Experimental Botany 发表题了为Successful field performance in dry-warm environments of soybean expressing the sunflower transcription factor HaHB4 的研究论文。该研究发现向日葵转录因子HaHB4能够明显提高大豆在干热环境下的产量。



HaHB4 是向日葵的一个转录因子,在拟南芥中表达该基因能够增加拟南芥的耐旱性(Cabello et al., 2007)。最近的研究表明,HaHB4 也能够赋予小麦抗旱性 (González et al., 2019)。


本文将HaHB4转化大豆植株,并筛选到一个在种子产量(seed yield, SY)方面表现较好的株系b10H。研究人员对这一株系在温室和在阿根廷不同环境中的27个田间试验中进行了评价。在温室试验中,转基因植株在逆境条件下表现出较高的SY值,且木质部面积增大,水分利用效率提高。在干热条件下该株系也表现出增强的SY。这种反应伴随着种子数量的增加,但单个种子重量有所下降(不过并不足以抵消种子数量增加所带来的产量增加)。对田间试验中基因型间SY差异最大的植株的转录组分析表明,在b10H中,编码氧化还原蛋白和热休克蛋白的基因被诱导了。


综上,本文的结果表明,在干热条件下,HaHB4的转基因能够提高大豆的产量,并且该技术是在干热条件下具有较好的应用。

在27个田间试验中,转基因cv b10H的产量超过野生型cv W82,特别是在干热环境中


原文链接:

https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/eraa064/5788192


参考文献

Cabello, J.V., Dezar, C.A., Manavella, P.A., and Chan, R.L. (2007). The intron of the Arabidopsis thaliana COX5c gene is able to improve the drought tolerance conferred by the sunflower Hahb-4 transcription factor. Planta 226, 1143-1154.

González, F.G., Capella, M., Ribichich, K.F., Curín, F., Giacomelli, J.I., Ayala, F., Watson, G., Otegui, M.E., and Chan, R.L. (2019). Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. J Exp Bot 70, 1669-1681.


附:

Abstract

HaHB4 is a sunflower transcription factor belonging to the homeodomain-leucine zipper I family whose ectopic expression in Arabidopsis triggers drought tolerance. The use of PCR to clone the HaHB4 coding sequence for wheat transformation caused unprogrammed mutations producing subtle differences in its activation ability in yeast. Transgenic wheat plants carrying a mutated version of HaHB4 were tested in 37 field experiments. A selected transgenic line yielded 6% more (P<0.001) and had 9.4% larger water use efficiency (P<0.02) than its control across the evaluated environments. Differences in grain yield between cultivars were explained by the 8% improvement in grain number per square meter (P<0.0001), and were more pronounced in stress (16% benefit) than in non-stress conditions (3% benefit), reaching a maximum of 97% in one of the driest environments. Increased grain number per square meter of transgenic plants was accompanied by positive trends in spikelet numbers per spike, tillers per plant, and fertile florets per plant. The gene transcripts associated with abiotic stress showed that HaHB4’s action was not dependent on the response triggered either by RD19 or by DREB1a, traditional candidates related to water deficit responses. HaHB4 enabled wheat to show some of the benefits of a species highly adapted to water scarcity, especially in marginal regions characterized by frequent droughts.